Quantitative MRI in lower limb muscles and heart of patients with limb-girdle muscular dystrophy type R9: preliminary results of a natural history study

Harmen Reyngoudt<sup>1</sup>, Yves Fromes<sup>1</sup>, Manon Granier<sup>2</sup>, Pierre-Yves Baudin<sup>1</sup>, Giorgia Querin<sup>3</sup>, Volker Straub<sup>4</sup>, Tanya Stojkovic<sup>5</sup>, Sophie Olivier<sup>2</sup>, John Vissing<sup>6</sup>, Benjamin Marty<sup>1</sup>

<sup>1</sup>Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Paris, France; <sup>2</sup>Généthon, Atamyo Therapeutics, Evry, France; <sup>3</sup>Institute of Myology, Adult Clinical Trials Platform, Neuro-Myology department, AP-HP Pitié Salpêtrière University Hospital, Paris, France; <sup>4</sup>The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; <sup>5</sup>Institute of Myology, Neuro-Myology department, AP-HP Pitié Salpêtrière University Hospital, Paris, France; <sup>6</sup>Copenhagen Neuromuscular Center, Neurology department, Riqhospitalet, University of Copenhagen, Copenhagen, Demark

# Background & Aim

<sup>7</sup> Limb-girdle muscular dystrophy type R9 (LGMD R9) is an autosomal recessive rare neuromuscular disorder caused by a mutation in the fukutin-related protein gene *FKRP*<sup>1</sup>. Respiratory and cardiac involvement is common and can occur independently of skeletal muscle involvement<sup>2</sup>. The disease is heterogeneous with age of onset, degree of severity and rate of progression, which was earlier confirmed by assessment of muscle fat fraction (FF) using **quantitative magnetic** resonance imaging (MRI)<sup>3</sup>.

✓ Quantitative **MRI-based outcome measures**, including **FF**, water T<sub>2</sub> and water T<sub>1</sub> (which reflect disease activity mechanisms such as inflammation/edema/...) are used in many longitudinal studies in neuromuscular diseases<sup>4</sup>. Besides skeletal muscle MRI, **MRI-based cardiac outcome measures** are also assessed in muscle diseases with cardiac involvement<sup>5</sup>.

 Here, we investigated preliminary MRI data in skeletal and cardiac muscle in the Généthon natural history study in LGMD R9.

## **Materials & Methods**

#### ✓ Study information:

Results

✓MRI:

- ✓ GNT-015-FKRP study: NCT03842878
- ✓ three sites in Europe → here, data from:
  - ✓ 26 patients (site 1)✓ 17 patients (site 2)



egmentation of individual muscles Abbreviations: AL/AM = adductor longy, GU/GM = biceps femoris, ED = extensor digitorum, GU/GM = gastrocnemius lateralis/medialis, GRA = gracilis, PER = peroneus, RF = rectus femoris, SAR = sarchius, SM = semimembranesus, SDL = soleus, ST = semitendinasus, TA/TP = tibialis anteriar/posteriar, VI/VM/VL = vastus intermedius/medialis/lateralis

eletal muscle MRI lower limbs – ma

Results



-  $T_1$  relaxometry (MRF: 9 axial slices)  $\rightarrow$  water  $T_1$  (ms)<sup>7</sup>, only at site 2 Cardiac I

manual segmentation individual muscles (mean value of 5 central slices)<sup>8</sup>

✓ quantitative MRI protocol skeletal muscle (left and right thighs/legs):

water-fat imaging (Dixon: 64 axial slices, 3 echo times) → FF (%)<sup>6</sup>

- T<sub>2</sub> relaxometry (MSE: 9 axial slices, 17 echo times) → water T<sub>2</sub> (ms)<sup>6</sup>

➔ post-processing using in-house code<sup>6,7</sup>

✓ Exams: performed on a 3-T clinical system (Siemens)

Abbreviations of MRI sequences: MSE = multi-spin-echo, MRF = magnetic resonance fingerprinting, bSSFP = balanced steady-stat-free-precession, MOLLI = modified Look-Locker inversion recovery ✓ Quantitative MRI protocol cardiac muscle<sup>5</sup> (only at site 2):

- CINE MRI (bSSFP: stack of short axis oriented slices covering left ventricle)  $\rightarrow$  ejection fraction, EF (%)
- T<sub>2</sub> relaxometry (bSSFP: basal/mid-ventricular levels of short axis oriented slices, 2 preparation times)  $\rightarrow$  water T<sub>2</sub> (ms)
- T<sub>1</sub> relaxometry (MOLLI: basal/mid-ventricular levels of short axis oriented slices, 3 inversion times), before and after contrast agent  $\rightarrow$  water T<sub>1</sub> (ms) and extracellular volume, ECV

post-processing using Segment software (17-segment model) Analysis:

- ✓ Analysis:
  - ✓ Student's t-test were used to assess differences between sites and visits (statistical significance: P<0.05).</p>
  - Standardized response means (SRM) values were calculated to assess sensitivity to change (SRM>0.8 considered as sensitive).
  - ✓ Control values (stem from 12 age and sex matched volunteers): 90<sup>th</sup> percentile is indicated in red in the plots.

1. Demographics site 1 site 2 <0 001 sex (female/male) 14/12 17/1 age at baseline (years) 33.9±13.1 38.7±12.2 0.11 years since onset symptoms 94+62 9.7±5.8 043 at baseline BMI at baseline (kg/m<sup>2</sup>) 24.8±4.6 23.8±6.0 0.29 Data are expressed as mean±standard deviatior

✓ Besides the male/female ratio, no significant differences were observed between the two sites for age, years since onset symptoms and body-mass index (BMI). Patients were younger in site 1 as compared to site 2 (but this was not significant).



✓ There were no left-right differences (*P*>0.10). Mean left-right values are shown here.

- ✓ FF was abnormal in all muscles (P<0.001), demonstrating a strong heterogeneity in disease severity, especially in posterior muscles.
- ✓ Water  $T_2$  (T2w) was abnormal (>37.7ms), predominantly in anterior muscles. Water  $T_1$  was abnormal (>1266ms), predominantly in medial-posterior muscles.
- $\checkmark$  Significant differences in FF (but not for water T\_2) were found between the 2 sites for several thigh muscles, such as vastus lateralis.

# Results 3. One-year changes in FF, water $T_2$ and water $T_1$ (site 2 only)

- ✓ Posterior thigh muscles, such as biceps femoris, demonstrated significant one-year changes in FF.
- ✓ High SRM values (>0.8) were also found for the posterior thigh muscles.
- ✓ With the exception of tibialis anterior water  $T_2$  (T2w), water  $T_2$  (T2w) and water  $T_1$  (T1w) values in other muscles did not change between baseline and year-1.



## Results

### 4. Cardiac MRI (site 2 only)

|                           | Data are expressed as mean±standard deviation |           |                        |      |      |
|---------------------------|-----------------------------------------------|-----------|------------------------|------|------|
|                           | 90th percentile controls                      | baseline  | change after<br>year-1 | SRM  | Р    |
| ejection fraction, EF (%) | 67                                            | 55.6±11.9 | +2.7±3.1               | 0.9  | 0.56 |
| water T <sub>2</sub> (ms) | 49.9                                          | 48.0±3.9  | -1.6±2.7               | 0.6  | 0.38 |
| water T <sub>1</sub> (ms) | 1330                                          | 1342±55   | -66±39                 | -1.7 | 0.23 |
| extracellular volume, ECV | 0.30                                          | 0.30±0.04 | -0.02±0.01             | -2.0 | 0.07 |

- ✓ Baseline cardiac MRI outcome measures were not different as compared to normal values.
- ✓ Values did not change significantly over the course of one year.
- ✓ Cardiac MRI outcomes are, however, very sensitive to change (see high SRM values).
- ✓ Four out 18 patients received medication for heart disorders.

 <sup>1</sup>Walter et al. J. Med. Gen. 2004;41:e50.
 <sup>5</sup>Marty et al. Eur. Heart J. Cardiovasc. Imaging 2019;20: 906

 <sup>2</sup>Bushby et al. Neuromuscul Disord. 1995;13:80-90.
 <sup>6</sup>Azzabou et al. J Magn Reson. Imaging 2015;41:645-53.

 <sup>3</sup>Willis et al. PLoS One 2013;8:e70993.
 <sup>7</sup>Marty et al. Magn. Reson. Med. 2020;83:621-34.

 <sup>4</sup>Carlier et al. J Neuromuscul Dis. 2016;3:1-28.
 <sup>\*</sup>Reyngoudt et al. Eur. Addiol. 2021;31:4264-76.

# Conclusion

- This new LGMD 2I natural history study has confirmed the heterogeneity in disease severity<sup>3</sup>, with strong variations in FF between patients and patient populations/sites.
- ✓ The current natural history study also included the assessment of disease activity indices (water T<sub>2</sub>, water T<sub>1</sub>) and demonstrated that some muscles showed elevated values as compared to controls.
- The cardiac MRI data did not reveal abnormalities.
- ✓ The preliminary results showed little changes after one year, (skeletal and cardiac MRI) except for posterior thigh muscle FF values.
- ✓ These natural history data, however, will establish a strong data base for comparison with data from the LGMD 2I clinical trial (ATA-001-FKRP, NCT05224505, initiated in August 2022).

